Date: Tue, 25 May 1999 13:59:30 -0500


From: .rain.forest.puppy. <rfp@WIRETRIP.NET>


To: BUGTRAQ@netspace.org


Subject: Advisory: NT ODBC Remote Compromise





--[ Advisory: NT ODBC Remote Compromise





--[ By Matthew Astley      [RCPS]        http://www.fruitcake.demon.co.uk


--[  & Rain Forest Puppy   [WireTrip]    rfp@wiretrip.net





--[ Brief Summary





MS Jet database engine (which runs Access databases) allows an individual


to embed VBA in string expressions, which may allow the individual to run


commandline NT commands.  This, combined with the flaw of IIS running ODBC


commands as system_local allow a remote attacker to have full control of


the system.  Other webservers may be affected.  Many MS Jet engines are


affected, but may not lead to elevated priviledges.





--[ Background





ODBC allows a program flexible access to one or more relational databases


using SQL. If a client fails to quote correctly the meta characters in a


piece of data used in an SQL query, an attacker may be able to interfere


with the tables in the database (see MS SQL appension 'feature' in Phrack


54, article 8).





However, the Microsoft "Jet" database engine (aka MS Access) provides some


extensions to SQL which allow the execution of VBA (Visual Basic for


Applications). This makes holes in meta character quoting code much more


interesting and dangerous.





--[ What form does the hole take?





In SQL, strings must be enclosed in single quotes. If a string includes a


single quote it must be escaped by doubling it up.





The Jet engine extends this by allowing strings to enclose a VBA


expression inside vertical bar characters in the string, like this:





        select 'lil'' string | 6+7 | with number' as foo from table;





This will produce a recordset containing one field with the value "lil'


string 13 with number" for each row of the input table. Innocent enough,


if the CGI or ASP programs correctly quote the incoming data.





However, since the pipe operator is a rather obscure character and is very


poorly documented, most people don't know it's there - apparently even


Microsoft programmers.





--[ It's a feature, not a bug!





Note the following excerpt from a MS Knowledge Base article:


(http://support.microsoft.com/support/kb/articles/q147/6/87.asp)





Pipe Character or Vertical Bar





  The pipe character or vertical bar is a reserved character for the Jet


database engine. It tells the Jet database engine to evaluate the


identifier before evaluating the rest of the expression. Therefore, the


Jet database engine inserts the value of the identifier in the expression,


and then evaluates it.





  Vertical bars are used most often in domain aggregate functions when you


want the function to automatically recalculate the value it returns in


filters. Or vertical bars are used as an alternative to the ampersand (&)


operator when you concatenate text values. Because of this, you cannot


embed the vertical bar (|) in a literal string, you must embed the Chr()


function. Chr(124) is the vertical bar.





--[ Where does it apply?





Any textual data included in a Jet SQL query can contain quoted VBA,


whether it is in data to be inserted in a new record or part of a


condition expression. This makes the hole very general (or flexible, if


you prefer), since you don't need to know the context in which the string


will be evaluated.





--[ What commands are available?





The biggest restriction is that the code must be evaluated in an


expression context - no statements.





Anything listed as "VBA" in the "Functions Reference" page of the Access


Help file will work, although this seems to vary between versions of the


Jet engine - for example, in some cases the "eval" function works and in


others it doesn't (although when it is available, eval doesn't actually


help much because the |...| operator offers a similar if not identical


context).





The most useful command is "shell", although this in itself cannot do


redirections or pipes - cmd.exe can assist with this though.  By using the


shell function and running cmd.exe, an attacker can run any command on the


system.





environ() can also be useful to get environment variables values into your


commands, and chr() can be very handy for quoting awkward characters using


alphanumerics and brackets. There are also the standard functions like


iif() and various string operations (use "&" for concatenation).





It would be very difficult to include any kind of loop in the VBA fragment


because loops do not have return values.





--[ Which characters need quoting, and how?





If the exploit string will be passing through anything that tries to


escape special characters then ' will be double up - best to use "


instead.





Ironically, the vertical bar character can only be escaped by using it to


evaluate the chr(124) function.





VBA will take pairs of double-quotes (") in a VBA string constant the same


way SQL will take pairs of single-quotes. If this doesn't seem to work you


can always use chr(34).





ASP also provides a convenient debugging aid - if the expression cannot be


correctly evaluated the error message will often include the whole SQL


query with the partially decoded exploit string in it--this could help an


attacker 'tweak' the exploit string until it works.





If the command needs to be broken up with newlines, they can be inserted


between VBA operators inside the |...| construction.





--[ How about a practical example?





An example of a pipeline:





        |shell("cmd /c echo " & chr(124) & " format a:")|





will format whatever is in the floppy drive at the time. Any errors will


be silently ignored, although an iconised window will take the focus for


the duration of the command.





Using "cmd /c" allows the command piping necessary to get a newline into


the format command, otherwise the pipe and 'format' are passed as


arguments to 'echo'.





This string can be included in anything from a simple ODBC operation to a


text item in an ASP form on a web page. The function will normally


evaluate to a two or three digit number.





A more sophie's-stick-ate-it example involves grabbing a copy of the SAM:





        |shell("cmd /c rdisk /S-")|


        |shell("cmd /c copy c:\winnt\repair\sam._ c:\inetput\wwwroot")|





        ** this example includes assumptions about the location of the


        ** system and www publishing directory; it's only an example





Commands can be stacked:





        |shell("cmd /c echo 1 > %temp%\foo.txt") & shell("cmd /c echo 2 \


        >> %temp%\foo.txt") & shell("cmd /c echo 3 >> %temp%\foo.txt")|





        ** line broken for clarity





It is not clear that the commands will always be executed in order. Each


shell command executes asynchronously so the code above has two races for


whether the shell commands finish updating the file before the next one


starts - results will be variable.





--[ Could an attacker modify registry keys?





Ultimately the hole allows anything since you can up/download and run any


code, but modifying registry keys from VBA seems to be a little tricky.





The method using advapi32.dll won't work because it requires statements to


declare functions from the library, but there doesn't seem to be a way of


giving a statement a return value in VBA.





It would be easier to create a temporary .reg file and then merge it with


"cmd /c regedit /s %temp%\tmp.reg"; the '/s' is important, as it


suppresses the informational dialogs/windows.





--[ What permissions will an attacker have?





The dangerous part comes from a context misinterpretation with IIS.  IIS


runs as system_local; it changes its token context (typically to IUSR_xxx)


for filesystem access and application execution.  However, the context


does *NOT* change when interfacing with the ODBC API.  Therefore all ODBC


functions (and the associated database calls) are happening under


system_local.  This allows full access to the system.





--[ Theory of exploitation





This problem can be used over the web against scripts that make queries


against local MS Jet ODBC DSNs, therefore, any script or application that


uses a MS Jet ODBC DSN could potentially be exploited.  The solution is to


not use MS Jet ODBC drivers for any DSN--until Microsoft releases a fix.


But since this is a documented feature, there stands a chance that some


applications may break if removed.





--[ Reality of exploitation





Ok, so let's get down to some nitty-gritty, real-life examples.  We'll


give a few that just demonstrate the problem....but since any


script/application that gives user entered strings to the MS Jet ODBC DSN


are vulnerable, we're not going to laundry-list them; rather, we'll show


some of the more common cases we found.





--[ Importance of the DSN





Just some really quick background on ODBC & DSNs: an application


'connects' to the ODBC service specifying a specific DSN to query to.  The


DSNs are defined in the ODBC32 applet of the control panel.  Each DSN is


basically a description of the name of the DSN, the drivers to use (in our


case, the MS Jet/Access drivers), and location of the actual database (a


.mdb file somewhere in the filesystem).  We could also have DSNs that used


drivers such as Oracle or MS Sql, and the location would be another


server.  The whole point is that you only need to know the DSN name--ODBC


will take care of where and how the actual database is to be used.





So, great, these scripts query a DSN by name.  Well, there are times were


a server can have the scripts we mention, but when ran, you get an error


saying DSN is not found.  So now what?  Well, if it's an IIS server, check


for the existance of /scripts/tools/newdsn.exe.  Yes, IIS includes CGI


appliations *to make DSNs*.  If the server doesn't have the DSN we need,


we can just make it for them.  We only need newdsn.exe, but it's possible


to use a 'GUI' through getdrvrs.exe and dsnform.exe.  Here's a flowchart:





        http://server/scripts/tools/getdrvrs.exe


        -> pick Microsoft Access Driver (*.mdb)


        -> Enter in the correct DSN name


        -> Enter a location for the .mdb, example: c:\web.mdb


        -> Submit





This will create the DSN.  If you want to be ultra-elite and do it the


hard way, you can pass all the parameters to newdsn.exe like so:





        http://server/scripts/tools/newdsn.exe?driver=Microsoft%2B


        Access%2BDriver%2B%28*.mdb%29&dsn=DSN_name&dbq=c:\web.mdb&


        newdb=CREATE_DB&attr=





        **all one line, no spaces





Where dsn is the name you want, and dbq is the file location.  So for all


the examples, we'll include the DSN name, just in case you have to create


it.





--[ IIS Sample Applications





According to Russ Cooper of NTBugtraq, sample application problems are


stupid and we shouldn't waste our time talking about them.  He's already


denied posts from myself, David Litchfield, and others.  So, if you lived


in Russ's little world, you won't have any of the following sample apps


installed on your server, so you should just stop reading this article


right now.  But for those of you who realize it's just not that simple,


perhaps you can learn something here.  Also note this goes beyond sample


scripts--they're just being used as a command reference example.





Anyways, a good example script is





        http://server/scripts/samples/details.idc?Fname=&Lname=





stick your shellcode in for either Fname or Lname, like so:





        details.idc?Fname=hi&Lname=|shell("cmd+/c+dir")|





This uses DSN named "Web SQL" (notice the space).  However, this causes


problems, because the actual table must be initialized in the DSN.  Never


pheer, scripts are here!  Run





        http://server/scripts/samples/ctguestb.idc





after you create the DSN (if you had to) and before you run details.idc





--[ MSADC (IIS 4.0)





Starting with IIS 4.0, Microsoft bundled a way to do remote SQL queries on


a DSN simply by interfacting via HTTP to a specific .dll.  Bug?  Hole?


Nope, in the documentation Microsoft states that having MSADC installed


could lead to security problems.





The particular .dll is at





        http://server/msadc/msadcs.dll





Now the particular problem is that there's a slightly custom way to


interface to the .dll, using multipart-forms.  So it's beyond the scope of


just typing in a paramter by hand.  So there's two options.





One is to see if the server also has the (optional) interface installed.


Check out for the existance of





        http://server/msadc/samples/adctest.asp


        


        ** Note: you have to use Internet Explorer 4.0+ for this





This will give you a Java/Javascript interface that allows you to specify


the DSN, uid/password, and SQL string to execute.  Note that you'll have


to obtain the table structure for the DSNs mentioned herein, because


you'll need to construct a valid SQL statement.





The other option is to obtain those files yourself from another server, or


download and install the MS RDS/ADO/ADC components.  Look at





        http://www.microsoft.com/data/ado/





for more info and where to download.





** One note is that the Java interface lets you specify which server to


use.  So you can open the interface locally, off your own server, or find


it on server 1, and specify to run SQL commands against whatever DSN on


server 2.





The one caveat is that error information is not displayed.  It helps to


have a sniffer going to see if what ODBC error messages are returned, if


any.  If you don't get a record listing, you might want to see what the


error was.





Now, what to do?





You can obviously just execute SQL commands that contain the pipe


character.  For instance:





        Connection: DSN=AdvWorks


        Query: Select * from Products where ProductType='|shell("")|'





        ** Insert your shellcode in the shell() function





--[ Sign-Off





Well, I'm sure that's enough to chew for a bit.  Sorry, the examples


weren't as in-depth as usual--you'll just have to be satisfied with


theory. :)





Matthew Astley [RCPS] http://www.fruitcake.demon.co.uk





.rain.forest.puppy. [WireTrip] rfp@wiretrip.net


.many thanks to Matthew for working on this project together. :>


.greetings to (#!)ADM, (#)Rhino9, and Phrack


.special thanks to joewee & antilove for giving me a hard time; stran9er


.for all the fun chats and setting me straight; and everyone else I forgot


.before these greets become longer than the advisory. :) Oh, and el8.org rox.





--[ This advisory is ISO 31337 certified.  Fact of life: ADM > *





----------------------------------------------------------------------------------





Date: Tue, 25 May 1999 22:00:42 +0100


From: Vittal Aithal <vittal.aithal@REVOLUTIONLTD.COM>


To: BUGTRAQ@netspace.org


Subject: Re: Advisory: NT ODBC Remote Compromise





    [ The following text is in the "iso-8859-1" character set. ]


    [ Your display is set for the "US-ASCII" character set.  ]


    [ Some characters may be displayed incorrectly. ]





Here's some javascript stuff that'll clean up quotes and things before


having them sent off in a sql query... only tested with access, so YMMV.





  function cleanSql (str) {


    var newStr = "";


    str = "" + str;


    var oneChar = (str.length == 1);


    if (str.length == 0) { return "null"; }


    for (var i = 0; i < str.length; i++) {


      var repStr = "";


      if (str.charAt(i) == "'") { newStr += "''"; }


      else if (str.charAt(i) == "|") { repStr = 124; }


      else if (str.charAt(i) == "\"") { repStr = 34; }


      else { newStr += str.charAt(i); }


      if (repStr) {


        if (i == 0 && !oneChar) {


          newStr += "CHR(" + repStr + ") &'";


        } else if (i == str.length - 1 && !oneChar) {


          newStr += "' & CHR(" + repStr + ")";


        } else if (!oneChar) {


          newStr += "' & CHR(" + repStr + ") & '";


        } else {


          newStr += "CHR(" + repStr + ")";


        }


      }


      if (!repStr && i == 0) {


        newStr = "'" + newStr;


      }


      if (!repStr && i == str.length - 1) {


        newStr += "'";


      }


    }


    return newStr;


  }





not elegant, but it does work, and stop |'s getting through.











bye


vittal





--


Vittal Aithal


Revolution Ltd <tel: 0181 267 1000> <fax: 0181 267 1066>


<vittal.aithal@revolutionltd.com> <http://www.revolutionltd.com/>


<vittal.aithal@bigfoot.com> <http://www.bigfoot.com/~vittal.aithal/>





----------------------------------------------------------------------------------





Date: Tue, 25 May 1999 14:43:25 -0700


From: Bigby Findrake <bigby@HOME.SHIVA.EU.ORG>


To: BUGTRAQ@netspace.org


Subject: Re: Advisory: NT ODBC Remote Compromise





On Tue, 25 May 1999, Vittal Aithal wrote:





> Here's some javascript stuff that'll clean up quotes and things before


> having them sent off in a sql query... only tested with access, so YMMV.





Do keep in mind that while this will stop people from using the


aforementioned exploits *only when using your forms*.  It is still


possible to download your web pages, remove the javascript hooks, and then


submit their information, or call the CGI(if method GET is accepted) by


hand and get around such security measures.





----------------------------------------------------------------------------------





Date: Wed, 26 May 1999 09:01:26 +0100


From: Vittal Aithal <vittal.aithal@REVOLUTIONLTD.COM>


To: BUGTRAQ@netspace.org


Subject: Re: Advisory: NT ODBC Remote Compromise





Just to clarify my earlier posting;





The code I posted was server-side ASP Javascript. As a number of people


have/will point out, running it at the client isn't going to help.





I suspect the same methodology could be applied for other environments


(coldfusion / perl DBI::DBD / php / etc).








cheers


vittal





----------------------------------------------------------------------------------





Date: Wed, 26 May 1999 18:56:05 +0200


From: Bronek Kozicki <bronek@wpi.com.pl>


To: BUGTRAQ@netspace.org


Subject: Re: Advisory: NT ODBC Remote Compromise





Hello





I have run some testing. Seems to me that this error has been repaired in


MSJET40, but exists in MSJET35. Effectively, if Jet 4 is installed (and it's


used by ODBC) ther's no problem with .IDC files. If one does not have Jet 4


and is using .IDC to open Jet databases (I have not verified this) I belive


this is dangerous situation, described by Matthew Astley.





Because MS Access 97 is using Jet 3.5 (even if Jet 4 is installed), the


problem still can be seen there.





If instead of .IDC (which is considered obsolete) one is using .ASP + ADODB,


and ADODB provider used is "Microsoft.Jet.OLEDB.3.51"  (i.e. older than


"4.0") then problem still exists.





It's worthy to notice that SQL implementation used in both Jet 4 and Jet 3.5


is little different. Thus applications (in some situations) cannot be simple


ported from one to another. One thing I found is different handling of


single- and double-qoute character. MS still have not documented differences


(or I had no luck to find it). AFAIK MS Jet 4 comes with  Microsoft Data


Access 2.1 (MSDAC21).





Details:





System: WinNT Wrkst 4 US, SP5 , IE5 , IIS 4 (Option Pack), ODBC MS Access


Driver 4.00.3513.00, other (cursor library, administrator etc.) ODBC files


3.510.3711.0


Database: Access 97, Jet 3.51.2026.0 (I have also Jet 4.00.2115.25


installed, but Access 97 uses older version)


Table "guests" as described in Web SQL.


Query "SecurityTest" as bellow:


  SELECT FirstName, LastName FROM Guests WHERE LastName =


'|Shell("notepad.exe",1)|';





What happens:


- If I open the query under MS Access, it opens Notepad app and shows the


(empty) resultset. So far mentioned SQL "feature" works.





- If I use MSQRY32.EXE to open the database (), nothing more happen than


showing the resultset (empty one).  The same if I run SQRY32 from within MS


Excel ("Get Externala Data")





- I created TEST.IDC file as bellow (and TEST.HTX, of course):


Datasource: Web SQL


Username: sa


Template: details.htx


SQLStatement:


+SELECT FirstName, LastName


+FROM SecurityTest


and opened it through HTTP. The only result is an empty resultset. I checked


list of processes (using TLIST.EXE) and notepad was not run.





- I created TEST2.IDC file as bellow:


Datasource: Web SQL


Username: sa


Template: details.htx


SQLStatement:


+SELECT FirstName, LastName


+FROM Guests


+WHERE LastName <> '|Shell("notepad.exe",1)|'


the same. Notepad did not run.





- I created very simple .ASP


<HTML>


<HEAD>


<%


Param = Request.QueryString("Param")


Data = Request.QueryString("Data")


%>


</HEAD>





<BODY>


<%


Set Conn1 = CreateObject("ADODB.Connection")


'strConn = "Provider=Microsoft.Jet.OLEDB.3.51;Data


Source=c:\temp\test.mdb;Mode=Read"


strConn = "Provider=Microsoft.Jet.OLEDB.4.0;Data


Source=c:\temp\test.mdb;Mode=Read"


strSQL = "SELECT FirstName , LastName FROM SecurityTest"





Conn1.Open strConn


Set RSet1 = Conn1.Execute(strSQL)


RSet1.Close


Conn1.Close


%>


</BODY>


</HTML>


Notice that there are 2 connection strings, one is used and the other


commented out. Upper connection string ("Provider=Microsoft.Jet.OLEDB.3.51")


is UNSAFE. When I opened .ASP it started NOTEPAD.EXE in the context of  WWW


server. If WWW client can type-in any literal into HTML form, pass it to


.ASP application (for exaple to be used in "WHERE" clause) and it remains


non-parsed, then he/she will be able to run ANY code in the context of


LocalSystem. If such a WWW server is also domain controller ... well, I'm


bit scared to think about. Lower connection string


("Provider=Microsoft.Jet.OLEDB.4.0") seems to be safe.





I hope somebody can verify my tests. Most important point is that while .IDC


files are using current ODBC it strongly depends on configuration of the


system. If Jet 4 is installed and is used by ODBC, we are safe. The same


applies to .ASP + ODBC. On the other side is .ASP + ADODB, where Jet engine


can be explicitly selected. If Jet older than 4 is used then we have


dangerous situation. Fortunately in .ASP we can easily parse strings passed


>from WWW client (like Vittal Aithal did in JavaScript, but function will be


run on the server side).





Regards.








Bronek Kozicki





--------------------------------------------------


ICQ UID: 25404796            PGP KeyID: 0x4A30FA9A


07EE 10E6 978C 6B33 5208  094E BD61 9067 4A30 FA9A











: -----Original Message-----


: From: Bugtraq List [mailto:BUGTRAQ@NETSPACE.ORG]


: Sent: Tuesday, May 25, 1999 9:00 PM


: To: BUGTRAQ@NETSPACE.ORG


: Subject: Advisory: NT ODBC Remote Compromise


:


:


: --[ Advisory: NT ODBC Remote Compromise


:


: --[ By Matthew Astley      [RCPS]        http://www.fruitcake.demon.co.uk


: --[  & Rain Forest Puppy   [WireTrip]    rfp@wiretrip.net


:


: --[ Brief Summary


:


: MS Jet database engine (which runs Access databases) allows an individual


: to embed VBA in string expressions, which may allow the individual to run


: commandline NT commands.  This, combined with the flaw of IIS running ODBC


: commands as system_local allow a remote attacker to have full control of


: the system.  Other webservers may be affected.  Many MS Jet engines are


: affected, but may not lead to elevated priviledges.





Here's something that does not work for me. ODBC is not using Jet "feature"


run embed VBA expression. It seems to use different database engine.





: --[ Background


:


: ODBC allows a program flexible access to one or more relational databases


: using SQL. If a client fails to quote correctly the meta characters in a


: piece of data used in an SQL query, an attacker may be able to interfere


: with the tables in the database (see MS SQL appension 'feature' in Phrack


: 54, article 8).





That's true, but not connected to the subject. Attacker seems not to use


Jet, while "feature" exists just there. At least on my system.





: However, the Microsoft "Jet" database engine (aka MS Access) provides some


: extensions to SQL which allow the execution of VBA (Visual Basic for


: Applications). This makes holes in meta character quoting code much more


: interesting and dangerous.





That's true.





[cut]





----------------------------------------------------------------------------------





Date: Thu, 27 May 1999 15:48:48 -0400


From: Russ <Russ.Cooper@RC.ON.CA>


To: NTBUGTRAQ@LISTSERV.NTBUGTRAQ.COM


Subject: Re: Advisory: NT ODBC Remote Compromise





I've had 2 individuals suggest that MDAC 2.1 solves the problems


described by rfp@wiretrip.net regarding NT ODBC and Access. There is


also another message on Bugtraq suggesting the same thing.





Daryl Banttari [daryl@windsorcs.com] reports that Allaire's ColdFusion


product is vulnerable to the same attack when using Access datasources,


but appears not to be vulnerable after installing MDAC 2.1.





I could put a direct link here to MDAC 2.1, but the fact is that you


should not simply upgrade to it without understanding what it changes


(and what effect those changes may have on your existing environment).


So instead, I give you;





http://www.microsoft.com/data/MDAC21info/MDAC21GAmanifest.htm





which has a ton of information about the MDAC 2.1 release.





Cheers,


Russ - NTBugtraq Editor





----------------------------------------------------------------------------------





Date: Thu, 27 May 1999 17:20:45 -0500


From: Jesper M. Johansson <jesper.m.johansson-1@UMN.EDU>


To: NTBUGTRAQ@LISTSERV.NTBUGTRAQ.COM


Subject: Re: Advisory: NT ODBC Remote Compromise





>I could put a direct link here to MDAC 2.1, but the fact is that you


>should not simply upgrade to it without understanding what it changes


>(and what effect those changes may have on your existing environment).


>So instead, I give you;


>


>http://www.microsoft.com/data/MDAC21info/MDAC21GAmanifest.htm





If you are using Excel data sources and are updating data in them you will


want to keep in mind that upgrading to MDAC 2.1 will break those data


sources. MDAC 2.1 no longer supports the update method for Excel data


sources. This will, for example, cause Cold Fusion to access violate, and


often causes crashes in InetSrv.exe if you are using IIS. Unfortunately, MS


forgot to mention that in the document Russ pointed to.





Jesper





Jesper.M.Johansson-1@umn.edu


Ph.D. Candidate, University of Minnesota


Editor, SANS NT Digest


MCSE , MCP + I


http://ids.csom.umn.edu/jesper


"Juris Praecepta sunt haec: honeste vivere,


alterum non laedere, suum cuique tribuere"


      Ulpian








